Neurotensin stimulates protein kinase C-dependent mitogenic signaling in human pancreatic carcinoma cell line PANC-1.
نویسندگان
چکیده
Neuropeptides and their corresponding G protein-coupled receptors are increasingly implicated in the autocrine/paracrine stimulation of growth of human cancers. Using K-Ras mutated human pancreatic ductal adenocarcinoma cell line PANC-1 as a model system, we demonstrate that neurotensin (NT) induced translocation of phosphorylated extracellular signal-regulated kinases (ERK-1 and ERK-2) to the nucleus, rapid dose-dependent activation of dual-specificity mitogen and ERK-1 and ERK-2 kinase-1/2 (MEK-1/2), and striking stimulation of c-Raf-1 but not pan-Ras. Furthermore, treatment of PANC-1 cells with protein kinase C (PKC) inhibitors, GF-1 and Ro 31-8220, completely abrogated NT-induced ERK-1 and ERK-2 activation, and significantly attenuated NT-induced c-Raf-1 stimulation. Interestingly, NT did not stimulate epidermal growth factor receptor transactivation, and epidermal growth factor receptor tyrosine kinase or Src inhibitors did not affect NT-induced ERK activation in PANC-1 cells. Our results indicate that NT potently stimulates c-Raf-1-MEK-ERK in PANC-1 cells through a PKC-dependent signaling pathway. Furthermore, we show that NT-induced DNA synthesis in PANC-1 cells is ERK-dependent. Finally, we demonstrate that NT stimulated clonal growth of PANC-1 cells in semisolid medium, which is abrogated by both GF-1 and the MEK-1/2 inhibitor, U0126. Collectively our results suggest that PKC-mediated stimulation of ERK-1 and ERK-2 play a pivotal role in NT-induced growth of PANC-1 cells harboring activating K-Ras mutation.
منابع مشابه
Neurotensin induces protein kinase C-dependent protein kinase D activation and DNA synthesis in human pancreatic carcinoma cell line PANC-1.
Signal transduction pathways through protein kinase C (PKC) may play a significant role in DNA synthesis and proliferation of human pancreatic cancers. Treatment of human pancreatic ductal adenocarcinoma cell line PANC-1 with biologically active phorbol-12,13-dibutyrate led to striking activation of protein kinase D (PKD), a member of a novel family of serine/threonine kinases distinct from PKC...
متن کاملMetformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth.
Recently, we identified a novel crosstalk between insulin and G protein-coupled receptor (GPCR) signaling pathways in human pancreatic cancer cells. Insulin enhanced GPCR signaling through a rapamycin-sensitive mTOR-dependent pathway. Metformin, the most widely used drug in the treatment of type 2 diabetes, activates AMP kinase (AMPK), which negatively regulates mTOR. Here, we determined whethe...
متن کاملBlocked by a Truncated Epidermal Growth Factor Receptor Multiple Mitogenic Pathways in Pancreatic Cancer Cells Are
The epidermal growth factor (EGF) receptor (EGFR) family consists of four transmembrane tyrosine kinases that undergo homodimerization and heterodimerization. Pancreatic cancers overexpress these receptors. To examine the effects of EGFR blockade on pancreatic cancer cell mitogenesis in relation to activation of specific signaling pathways, four pancreatic cancer cell lines were infected with a...
متن کاملA novel small-molecule inhibitor of protein kinase D blocks pancreatic cancer growth in vitro and in vivo.
Protein kinase D (PKD) family members are increasingly implicated in multiple normal and abnormal biological functions, including signaling pathways that promote mitogenesis in pancreatic cancer. However, nothing is known about the effects of targeting PKD in pancreatic cancer. Our PKD inhibitor discovery program identified CRT0066101 as a specific inhibitor of all PKD isoforms. The aim of our ...
متن کاملCytotoxic effect of pyocyanin on human pancreatic cancer cell line (Panc-1)
Objective(s): Pyocyanin, a blue-green pigment produced by Pseudomonas aeruginosa, interferes with host redox cycles, which can lead to generation of reactive oxygen species and progressive cellular oxidative damage. The aim of this study was to assess the influence of pyocyanin on human pancreatic cancer cell line.Materials and Methods: Polymerase Chain Reaction (PCR) was applied to confirm the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 63 10 شماره
صفحات -
تاریخ انتشار 2003